导航:首页 > 车辆百科 > 火车车辆制动机

火车车辆制动机

发布时间:2021-12-27 04:13:19

1、火车如何制动?

列车制动在操纵上按用途可分为“常用制动”和“紧急制动”两种。在正常情况下为调节或控制列车速度包括进站停车所施行的制动,称为“常用制动”,它的特点是作用比较缓和而且制动力可以调节。在紧急情况下为使列车尽快停住所施行的制动,称为“紧急制动”(也称为“非常制动”),它的特点是作用比较迅猛而且要把列车制动能力全部用上。

2、火车的制动系统是怎样的

火车本身的自重很大,黏着力也就大,只要牵引力不大于黏着力就没事,所以很滑的钢轨也能走,但是上边有油\水就容易打滑(空转)了.钢轨光滑,车在有速度的时候阻力也就小了,不加牵引力,利用机车的动能也能走上很远.
火车是通过空气制动的,在机车上有两台空气压缩机(俗称风泵),把空气压缩到机车的总风缸内备用,机车和后边的车辆制动系统通过风管连接起来,由机车控制列车管的充风和排风控制列车制动的.一般的想法都认为火车是充风制动,排风缓解(缓解是术语,就是制动的反意),其实不然.
为了安全,我们国家采用的是充风缓解,排风制动,因为车动不了没什么,但是要是停不下来就麻烦了,比如风泵不泵风了,列车管断了.在车辆上有一个副风缸,在机车\车辆联挂以后,机车控制向列车管充风,首先把副风缸充满,副风缸是个只进不出的铁公鸡,在列车管和副风缸压力一样的时候没动作,当机车控制列车管减压的时候,列车管的压力和副风缸的压力出现了差别,副风缸的压力就推动车辆的制动系统摩擦车轮踏面产生制动力.缓解的时候,列车管充风,压力变大,制动系统就远离车轮塌面,直到两边压力平衡.
车辆的制动靠的闸瓦,一种有弧度的铁块很重,现在也有高磨闸瓦了,很轻.制动就是靠它摩擦车轮产生制动力的.
现在普遍的技术还有一种叫电阻制动,是安装在机车上的一套系统,是改变电动机为发电机产生扭矩减速的一套系统,但是它只能减速,不能停车,停车还是要靠空气制动机.机车牵引的时候牵引力来自六台牵引电动机,给它供电它就产生牵引力,列车惯性很大,减速的时候,就把电动机变成发电机,转子切割磁力线产生电能,同时磁场也产生相反的力作用在转子上,这就是电阻制动的制动力,发出的电都消耗在一个电阻上,这个电阻会烧的很红.

3、火车的制动系统是什么如题 谢谢了

列车制动装置由装在机车上的供风系统和自动制动阀、分装在机车和车辆上的制动机和基础制动装置,以及贯通全列车的制动管(又称刹车管)组成。整个制动系统中充以压缩空气。供风系统包括空气压缩机和总风缸,其作用是供给整个系统所需的压缩空气。柴油机车和电力机车的空气压缩机是电动的,而在蒸汽机车上则以蒸汽机带动,称为风泵。自动制动阀是机车司机用以操纵列车制动系统的装置。司机扳动自动制动阀手柄,控制制动管的排风或充风,使装在机车和车辆上的制动机动作

4、火车的制动系统是怎样的?

火车本身的自重很大,黏着力也就大,只要牵引力不大于黏着力就没事,所以很滑的钢轨也能走,但是上边有油\水就容易打滑(空转)了.钢轨光滑,车在有速度的时候阻力也就小了,不加牵引力,利用机车的动能也能走上很远.
火车是通过空气制动的,在机车上有两台空气压缩机(俗称风泵),把空气压缩到机车的总风缸内备用,机车和后边的车辆制动系统通过风管连接起来,由机车控制列车管的充风和排风控制列车制动的.一般的想法都认为火车是充风制动,排风缓解(缓解是术语,就是制动的反意),其实不然.
为了安全,我们国家采用的是充风缓解,排风制动,因为车动不了没什么,但是要是停不下来就麻烦了,比如风泵不泵风了,列车管断了.在车辆上有一个副风缸,在机车\车辆联挂以后,机车控制向列车管充风,首先把副风缸充满,副风缸是个只进不出的铁公鸡,在列车管和副风缸压力一样的时候没动作,当机车控制列车管减压的时候,列车管的压力和副风缸的压力出现了差别,副风缸的压力就推动车辆的制动系统摩擦车轮踏面产生制动力.缓解的时候,列车管充风,压力变大,制动系统就远离车轮塌面,直到两边压力平衡.
车辆的制动靠的闸瓦,一种有弧度的铁块很重,现在也有高磨闸瓦了,很轻.制动就是靠它摩擦车轮产生制动力的.

现在普遍的技术还有一种叫电阻制动,是安装在机车上的一套系统,是改变电动机为发电机产生扭矩减速的一套系统,但是它只能减速,不能停车,停车还是要靠空气制动机.机车牵引的时候牵引力来自六台牵引电动机,给它供电它就产生牵引力,列车惯性很大,减速的时候,就把电动机变成发电机,转子切割磁力线产生电能,同时磁场也产生相反的力作用在转子上,这就是电阻制动的制动力,发出的电都消耗在一个电阻上,这个电阻会烧的很红.

5、如何使用铁路客车手制动机

一旦出现机车在途中坏了无法在运行时,应根据运转车长的指令由列车员将其制动机拧死,以避免列车出现滑溜。

列车上有两个制动机,乘务室旁边的这个是紧急制动阀,在列车行驶过程中,出现突发事件由列车司乘人员将制动阀拉下。

拉下以后,列车风管就会出现漏风,漏风以后闸瓦就回摩擦车轮,在大面积漏风时机车上的总风缸表指针就会下降,牵引力也加大,根据行规规定,机车乘务员发现指针快速下降以后必须将空气制动阀移至保压位置,并且使用电制动立即果断要求停车。

在车门口这个转动圆形的手制动机是用于在长达上坡道或者是下坡道机车坏了或者是需要换机车时采用的防溜措施,根据行规规定:一旦出现机车在途中坏了无法在运行时,应根据运转车长的指令由列车员将其制动机拧死,以避免列车出现滑溜。

随着铁路运输的发展,先后出现了多种机力制动机,如真空制动机、直通空气制动机、自动空气制动机、电空制动机等。

真空制动机 :

真空制动机系统在机车上设有真空泵、制动阀和真空制动缸,在车辆上则仅有真空制动缸。全列车制动部件用公称直径 50毫米以上的制动管连通。司机操纵制动阀,改变制动管中的真空度,真空制动缸中便产生压力差,从而起阶段的制动或缓解作用。

它的优点是构造简单,但制动力不大,而且海拔越高制动力越小。它的制动作用由列车头部车辆向后传播的速度低,制动空走时间和缓解时间都较长,列车前后冲动较大。英国铁路企业自1964年起逐步改用自动空气制动机。使用真空制动机的国家日益减少。

直通空气制动机 :

它的制动作用是用空气压缩机产生压缩空气贮存在总风缸中,司机操纵制动阀,将总风缸中的压缩空气通过制动管送入机车和车辆上的制动缸实现制动,或将制动缸中的压缩空气排出,实现缓解。这种制动机是美国发明家G.威斯汀豪斯在1869年发明的。

由于压缩空气由前向后逐车输送,列车前后车辆制动机动作时间差较大,这种制动机对较长的列车不适用。当列车分离时,制动能力全部丧失,列车运行安全不能保证,因此这种制动机应用不广。

电空制动机 :

以压缩空气为动力,利用电磁阀控制各节车辆上空气制动机的制动和缓解作用的制动系统。按作用原理可分为:①直通式,电磁阀直接控制压缩空气进入或排出制动缸。②自动式,电磁阀控制制动管压力增减,使自动空气制动机起作用。

使用电空制动机可使列车前部和后部的车辆动作一致,能有效地减弱列车的纵向冲动,缩短制动距离。因此各国的地下铁道车辆、动车组和高速旅客列车广泛应用这种设备,货物列车采用尚少。

6、火车的制动原理是什么?

制动装置一般可分为两大组成部分:
(1)“制动机”——产生制动原动力并进行操纵和控制的部分。
(2)“基础制动装置”——传送制动原动力并产生制动力的部分。
列车制动在操纵上按用途可分为两种。
(l)“常用制动”——正常情况下为调节或控制列车速度,包括进站停车所施行的制动。其特点是作用比较缓和而且制动力可以调节,通常只用列车制动能力的20%~80%,多数情况下只用50%左右。
(2)“紧急制动”—一紧急情况下为使列车尽快停住而施行的制动(在我国,也称“非常制动”),其特点是作用比较迅猛,而且要把列车制动能力全部用上。
从司机实施制动(将制动手柄移至制动位)的瞬间起,到列车速度降为零的瞬间止,列车所驶过的距离,称为列车“制动距离”。这是综合反映列车制动装置的性能和实际制动效果的主要技术指标。
闸瓦制动,又称踏面制动,是自有铁路以来使用最广泛的一种制动方式。它用铸铁或其他材料制成的瓦状制动块(闸瓦)紧压滚动着的车轮踏面,通过闸瓦与车轮踏面的机械摩擦将列车的动能转变为热能,消散于大气,并产生制动力。其他制动方式除闸瓦制动外,铁路机车车辆还有一些其他制动方式。
(一)盘形制动
盘形制动(摩擦式圆盘制动)是在车轴上或在车轮辐板侧面装上制动盘,一般为铸铁圆盘,用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力,把列车动能转变成热能,消散于大气。参看图4—1-4。
与闸瓦制动相比,盘形制动有下列主要优点:
(1)可以大大减轻车轮踏面的热负荷和机械磨耗。
(2)可按制动要求选择最佳“摩擦副”(采用闸瓦制动时,作为“摩擦副”一方的车轮的构造和材质不能根据制动的要求来选择),盘形制动的制动盘可以设计成带散热筋的,旋转时它具有半强迫通风的作用,以改善散热性能,为采用摩擦性能较好的合成材料闸片创造了有利的条件,适宜于高速列车。
(3)制动平稳,几乎没有噪声。
但是,盘形制动也有它不足之处:
(1)车轮踏面没有闸瓦的磨刮,轮轨粘着将恶化,所以,还要考虑加装踏面清扫器(或称清扫闸瓦),或采用以盘形为主、盘形加闸瓦的混合制动方式,否则,即使有防滑器,制动距离也比闸瓦制动要长。
(2)制动盘使簧下重量及其引起的冲击振动增大,运行中还要消耗牵引功率。
盘形制动的制动力
(二)磁轨制动
磁轨制动(摩擦式轨道电磁制动)是在转向架的两个侧架下面,在同侧的两个车轮之间,各安置一个制动用的电磁铁(或称电磁靴),制动时将它放下并利用电磁吸力紧压钢轨,通过电磁铁上的磨耗板与钢轨之间的滑动摩擦产生制动力,并把列车动能变为热能,消散于大气。参看图4—1-5。
磁轨制动的制动力

式中K——每个电磁铁的电磁吸力;
φ一一电磁铁与钢轨间的滑动摩擦系数。
与闸瓦和盘形制动相比,磁轨制动的优点是,它的制动力不是通过轮轨粘着产生的,自然也不受该粘着的限制。高速列车加上它,就可以在粘着力以外再获得一份制动力,使制动距离不致于太长。磁轨制动的不足之处是,它是靠滑动摩擦来产生制动力的,电磁铁要磨耗,钢轨的磨耗也要增大,而且,滑动摩擦力无论如何也没有粘着力大。所以,磁轨制动只能作
为紧急制动时的一种辅助的制动方式,用于粘着力不能满足紧急制动距离要求的高速列车上,在施行紧急制动时与闸瓦(或盘形)制动一起发挥作用。
(三)轨道涡流制动
轨道涡流制动又称线性涡流制动或涡流式轨道电磁制动。它与上述磁轨制动(摩擦式轨道电磁制动)很相似,也是把电磁铁悬挂在转向架侧架下面同侧的两个车轮之间。不同的是,轨道涡流制动的电磁铁在制动时只放下到离轨面几毫米处而不与钢轨接触。它是利用电磁铁和钢轨的相对运动使钢轨感应出涡流,产生电磁吸力作为制动力,并把列车动能变为热能消散于大气。
轨道涡流制动既不通过轮轨粘着(不受其限制),也没有磨耗问题。但是,它消耗电能太多,约为磁轨制动的10倍,电磁铁发热也很厉害,所以,它也只是作为高速列车紧急制动时的一种辅助制动方式。
(四)旋转涡流制动
旋转涡流制动(涡流式圆盘制动)是在牵引电动机轴上装金属盘,制动时金属盘在电磁铁形成的磁场中旋转,盘的表面被感应出涡流,产生电磁吸力,并发热消散于大气,从而产生制动作用。
与盘形制动(摩擦式圆盘制动)相比,旋转涡流制动(涡流式圆盘制动)的圆盘虽然没有装在轮对上,但同样要通过轮轨粘着才能产生制动力,也要受粘着限制。而且,与轨道涡流制动相似,旋转涡流制动消耗的电能也太多。
(五)电阻制动
电阻制动广泛用于电力机车、电动车组和电传动内燃机车。它是在制动时将原来驱动轮对的自励的牵引电动机改变为他励发电机,由轮对带动它发电,并将电流通往专门设置的电阻器,采用强迫通风,使电阻发生的热量消散于大气,从而产生制动作用。
(六)再生制动
与电阻制动相似,再生制动也是将牵引电动机变为发电机。不同的是,它将电能反馈回电网,使本来由电能或位能变成的列车动能获得再生,而不是变成热能消散掉。显然,再生制动比电阻制动在经济上合算,但是技术上比较复杂,而且它只能用于由电网供电的电力机车和电动车组,反馈回电网的电能要马上由正在牵引运行的电力机车或电动车组接收和利用。
上述各种制动方式中,除磁轨制动和轨道涡流制动外,都要通过轮轨粘着来产生制动力并受粘着限制,所以习惯上统称为“粘着制动”,并把不通过粘着者统称为“非粘(着)制动”。
制动机种类
按制动原动力和操纵控制方法的不同,机车车辆制动机可分类为:手制动机、空气制动机、真空制动机、电空制动机和电(磁)制动机。
(一)手制动机
手制动机的特点是以人力为原动力,以手轮的转动方向和手力的大小来操纵控制。它构造简单、费用低廉,是铁路上历史最悠久、生命力最顽强的制动机。铁路发展初期,机车车辆上都只有这种制动机,每车或几个车配备一名制动员,按司机的笛声号令协同操纵。由于它制动力弱、动作缓慢、不便于司机直接操纵,所以很快就被非人力的制动机所代替。非人力的制动机成了主要的制动机,手制动机退居次要地位,成了辅助的备用的制动机。但是它的这个“配角”的地位很牢固。在调车作业、车站停放或者主要制动机突然失灵时,手机仍然是一个简单有效的救急的制动手段。
(二)空气制动机
空气制动机的特点是以压力空气(它与大气的压差,即压力空气的相对压强)作为原一以改变空气压强来操纵控制。它的制动力大、操纵控制灵敏便利。
我国铁路上习惯于把压力空气简称为“风”,把空气制动机简称为“风闸”。依此类推风缸、风泵、风管、风压、风表等名称均由此而来。直通式空气制动机的基本特点是:列车管直接通向制动缸(“直通”),列车管充气(增压)时制动缸也充气(增压),发生制动;列车管排气(减压)时制动缸也排气碱压),发生缓解。它的优点是构造简单,并且既有阶段制动,又有阶段缓解,操纵非常灵活方便。缺点是当列车发生分离事故、制动软管被拉断时,将彻底丧失制动能力,而且,列车前后部发生制动作用的时间差太大,不适用于编组较长的列车。因此,列车操纵后来就改用了自动式空气制动机。
2.自动式空气制动机
自动空气制动机包括机车制动机和车辆制动机,分别安装在机车和车辆上,构成制动机的一个整体。自动空气制动机由下列主要部件组成,并分别用管路连接。
(1)空气压缩机——一般称为风泵。利用机车的蒸汽或柴油机、电动机作动力,将空气压缩成压力空气,供制动系统及其他风动装置使用。在制动机中称压力空气为风或气。
(3)总风缸——机车贮存压力空气的容器。因没有压力调整器,能自动控制空气压缩机的运转或停止,使总风缸的空气压力始终保持为8~9kgf/cm2。
(3)给风阀——为调节压力空气的部件,总风缸的高压空气经给风阀调整为规定的风压后,送入制动管。我国规定货物列车制动管风压(简称定压)为5kgf/cm2,旅客列车为6kgf/cm2。
(4)自动制动阀——简称大闸或自阀,是司机操纵列车制动机的部件。机车上还装设单独调动阀(或称小闸、单阀),单机运行时,司机使用单独制动阀操纵机车制动机。
(5)副风缸——是每个车辆贮存压力空气的容器。机车上因有总风缸,不另设副风缸。
(6)制动缸——是将空气压力转变为制动原动力的部件。利用压力空气推动制动缸活塞,压缩缓解弹簧,使活塞杆推出产生制动作用;如排出制动缸的压力空气则缓解弹簧推回活塞,使制动机缓解。机车车辆都装有制动缸。
(7)三通阀——装设在车辆上,是依靠制动管风压的变化使制动机形成制动或缓解等作用的部件。机车上使用的是分配阀,它控制机车(及深水车)的制动和理解等作用。
与直通式相比,在组成上每辆车多了一个三通阀6和一个副风缸8。“三通”指的是:一通列车管,二通副风缸,三通制动缸。
(四)电空制动机
电空制动机为电控空气制动机的简称。它是在空气制动机的基础上加装电磁阀等电气控制部件而形成的。它的特点是制动作用的操纵控制用电,但制动作用的原动力还是压力空气(它与大气的压差)。在制动机的电控因故失灵时,它仍可以实行空气压强控制(气控),临时变成空气制动机。
(五)电磁制动机
操纵控制和原动力都用电的制动机称为电磁制动机,简称电制动机。例如轨道涡流制动和旋转涡流制动,其操纵控制和原动力都用电,所以,采用这两种制动方式的制动机都属于电磁制动机的范畴(其实,对于这种制动方式,制动机和基础制动已很难截然分开了)。

7、火车制动的空气制动机

是以压力空气作为制动原动力,以改变压力空气的压强来操纵控制。制动力大,操纵控制就灵敏便利。我国铁路习惯把压力空气简称为“风”,把空气制动机简称为“风闸”。空气制动机又分直通式和自动式两大类,直通式空气制动机已不再采用。

8、火车是怎么刹车的 什么原理

制动距离原理。

在一定的初速度下,从驾驶员急踩制动踏板开始,到汽车完全停住为止所驶过的距离。包括反应距离和制动距离两个部分。制动距离越小,汽车的制动性能就越好。由于比较直观成为广泛采用的评价制动效能的指标。正确掌握汽车制动距离对保障行车安全起着十分重要的作用。

此距离的长短,取决于行驶速度和反应时间,行驶速度越高或反应时间越长,反应距离就越长。反应时间又与驾驶员的灵敏程度、技术熟练状况有直接关系。通常的反应时间为0.75至1秒,假如车速为30公里/小时,反应时间为一秒,反应距离则为8.33米。



火车制动方式

列车制动在操纵上按用途可分为“常用制动”和“紧急制动”两种。在正常情况下为调节或控制列车速度包括进站停车所施行的制动,特点是作用比较缓和而且制动力可以调节。在紧急情况下为使列车尽快停住所施行的制动,特点是作用比较迅猛而且要把列车制动能力全部用上。

从施行制动的瞬间起,到列车速度降为零的瞬间止,列车驶过的距离,这是综合反映列车制动装置性能和效果的主要技术指标。列车重量越大,运行速度越高,就越不容易在短时间、短距离内停下来。

以上内容参考 网络-制动距离

以上内容参考 网络-火车制动

9、火车制动的手制动机

是以人力为制动原动力,以手轮的转动方向和手力大小来操纵控制。构造简单,费用低廉,是铁路历史上使用最久远,生命力最顽强的制动机。铁路发展初期,机车车辆上只有这种制动机,每车或几个车配备一名制动员,按司机笛声号令协同操纵,由于制动力弱,动作缓慢,不便于司机直接操纵,所以很快就被非人力制动机取而代之,手制动机成为辅助的备用制动机。


与火车车辆制动机相关的内容