导航:首页 > 车辆百科 > 分类器检测车辆

分类器检测车辆

发布时间:2021-12-08 13:21:05

1、如何用 opencv 训练自己的分类器

首先,需要说明的是,OpenCV自带的haar training提取的特征是haar特征 分类器是AdaBoost级联分类器(如需了解Adaboost算法, 。所谓的级联分类器,就是将若干的简单的分量分类器(可以理解为一般的普通分类器)依次串联起来,最终的检测分类结果,要依次通过所有的分量分类器才能算是一个有效的检测分类结果。否则,就认为当前检测区域内没有我们需要找的目标。
利用OpenCV自带的haar training程序训练一个分类器,需要经过以下几个步骤:
(1)收集训练样本:
训练样本包括正样本和负样本。正样本,通俗点说,就是图片中只有你需要的目标。而负样本的图片只要其中不含有目标就可以了。但需要说明的是,负样本也并非随便选取的。例如,你需要检测的目标是汽车,那么正样本就应该是仅仅含有汽车的图片,而负样本显然不能是一些包含天空的,海洋的,风景的图片。因为你最终训练分类器的目的是检测汽车,而汽车应该出现在马路上。也就是说,分类器最终检测的图片应该是那些包含马路,交通标志,建筑物,广告牌,汽车,摩托车,三轮车,行人,自行车等在内的图片。很明显,这里的负样本应该是包含摩托车、三轮车、自行车、行人、路面、灌木丛、花草、交通标志、广告牌等。
另外,需要提醒的是,adaboost方法也是机器学习中的一个经典算法,而机器学习算法的前提条件是,测试样本和训练样本独立同分布。所谓的独立同分布,可以简单理解为:训练样本要和最终的应用场合非常接近或者一致。否则,基于机器学习的算法并不能保证算法的有效性。此外,足够的训练样本(至少得几千张正样本、几千张负样本)也是保证训练算法有效性的一个前提条件。
这里,假设所有的正样本都放在f:/pos文件夹下,所有的负样本都放在f:/neg文件夹下;

(2)对所有的正样本进行尺寸归一化:
上一步收集到的正样本,有很多的尺寸大小,有的是200*300,有的是500*800...尺寸归一化的目的,就是把所有的图片都缩放到同一大小。比如,都缩放到50*60的大小。

(3)生成正样本描述文件:
所谓的正样本描述文件,其实就是一个文本文件,只不过,很多人喜欢将这个文件的后缀改成.dat而已。正样本描述文件中的内容包括:文件名 目标个数 目标在图片中的位置(x,y,width,height)
典型的正样本描述文件如下所示:
0.jpg 1 0 0 30 40
1.jpg 1 0 0 30 40
2.jpg 1 0 0 30 40
.....
不难发现,正样本描述文件中,每一个正样本占一行,每一行以正样本图片开头,后面紧跟着该图片中正样本的数量(通常为1),以及正样本在图片中的位置
假如,f:\pos文件夹下有5000个正样本图片,每个图片中仅有一个目标。那么,我们可以写程序(遍历文件夹中的所有图片文件,将文件名写入到文件中,将正样本在图片中的位置,大小都写入文件中)生成一个pos.dat文件作为正样本描述文件。

(4)创建正样本vec文件
由于haarTraining训练的时候需要输入的正样本是vec文件,所以需要使用createsamples程序来将正样本转换为vec文件。
打开OpenCV安装目录下bin文件夹里面的名为createSamples(新版本的OpenCV里面改名为opencv_createSamples)的可执行程序。需要提醒的是,该程序应该通过命令行启动(可以参考我的另一篇博客:http://blog.csdn.net/carson2005/article/details/6704589 )。并设置正样本所在的路径以及生成的正样本文件保存路劲(例如:f:\pos\pos.vec)。
Createsamples程序的命令行参数:
命令行参数:
-vec <vec_file_name>
训练好的正样本的输出文件名。
-img<image_file_name>
源目标图片(例如:一个公司图标)
-bg<background_file_name>
背景描述文件。
-num<number_of_samples>
要产生的正样本的数量,和正样本图片数目相同。
-bgcolor<background_color>
背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。
-bgthresh<background_color_threshold>
-inv
如果指定,颜色会反色
-randinv
如果指定,颜色会任意反色
-maxidev<max_intensity_deviation>
背景色最大的偏离度。
-maxangel<max_x_rotation_angle>
-maxangle<max_y_rotation_angle>,
-maxzangle<max_x_rotation_angle>
最大旋转角度,以弧度为单位。
-show
如果指定,每个样本会被显示出来,按下"esc"会关闭这一开关,即不显示样本图片,而创建过程继续。这是个有用的debug选项。
-w<sample_width>
输出样本的宽度(以像素为单位)
-h《sample_height》
输出样本的高度,以像素为单位。

(5) 创建负样本描述文件
在保存负样本的文件夹下生成一个负样本描述文件,具体步骤同(3),此处不再赘叙;

(6)进行样本训练
该步骤通过调用OpenCV\bin目录下的haartraining程序(新版本的opencv改名为opencv_haartraining)来完成。其中,Haartraining的命令行参数为:
-data<dir_name>
存放训练好的分类器的路径名。
-vec<vec_file_name>
正样本文件名(由trainingssamples程序或者由其他的方法创建的)
-bg<background_file_name>
背景描述文件。
-npos<number_of_positive_samples>,
-nneg<number_of_negative_samples>
用来训练每一个分类器阶段的正/负样本。合理的值是:nPos = 7000;nNeg = 3000
-nstages<number_of_stages>
训练的级联分类器层数。
-nsplits<number_of_splits>
决定用于阶段分类器的弱分类器。如果1,则一个简单的stump classifier被使用。如果是2或者更多,则带有number_of_splits个内部节点的CART分类器被使用。
-mem<memory_in_MB>
预先计算的以MB为单位的可用内存。内存越大则训练的速度越快。
-sym(default)
-nonsym
指定训练的目标对象是否垂直对称。垂直对称提高目标的训练速度。例如,正面部是垂直对称的。
-minhitrate《min_hit_rate》
每个阶段分类器需要的最小的命中率。总的命中率为min_hit_rate的number_of_stages次方。
-maxfalsealarm<max_false_alarm_rate>
没有阶段分类器的最大错误报警率。总的错误警告率为max_false_alarm_rate的number_of_stages次方。
-weighttrimming<weight_trimming>
指定是否使用权修正和使用多大的权修正。一个基本的选择是0.9
-eqw
-mode<basic(default)|core|all>
选择用来训练的haar特征集的种类。basic仅仅使用垂直特征。all使用垂直和45度角旋转特征。
-w《sample_width》
-h《sample_height》
训练样本的尺寸,(以像素为单位)。必须和训练样本创建的尺寸相同。
一个训练分类器的例子:
"D:\Program Files\OpenCV\bin\haartraining.exe" -data data\cascade -vec data\pos.vec -bg negdata\negdata.dat -npos 49 -nneg 49 -mem 200 -mode ALL -w 20 -h 20
训练结束后,会在目录data下生成一些子目录,即为训练好的分类器。
(7) 生成xml文件
上一步在进行haartraining的时候,会在data目录下生成一些目录及txt文件,我们需要调用opencv\bin\haarconv.exe将这些txt文件转换为xml文件,也就是所谓的分类器。

至此,分类器的训练工作已完成。剩下的,就是在程序中加载xml文件,并调用相应的函数接口来实现分类检测的作用了。

2、如何利用OpenCV自带的haar training程序训练分类器

利用OpenCV自带的haar training程序训练一个分类器,需要经过以下几个步骤:
(1)收集训练样本:
训练样本包括正样本和负样本。正样本,通俗点说,就是图片中只有你需要的目标。而负样本的图片只要其中不含有目标就可以了。但需要说明的是,负样本也并非随便选取的。例如,你需要检测的目标是汽车,那么正样本就应该是仅仅含有汽车的图片,而负样本显然不能是一些包含天空的,海洋的,风景的图片。因为你最终训练分类器的目的是检测汽车,而汽车应该出现在马路上。也就是说,分类器最终检测的图片应该是那些包含马路,交通标志,建筑物,广告牌,汽车,摩托车,三轮车,行人,自行车等在内的图片。很明显,这里的负样本应该是包含摩托车、三轮车、自行车、行人、路面、灌木丛、花草、交通标志、广告牌等。
另外,需要提醒的是,adaboost方法也是机器学习中的一个经典算法,而机器学习算法的前提条件是,测试样本和训练样本独立同分布。所谓的独立同分布,可以简单理解为:训练样本要和最终的应用场合非常接近或者一致。否则,基于机器学习的算法并不能保证算法的有效性。此外,足够的训练样本(至少得几千张正样本、几千张负样本)也是保证训练算法有效性的一个前提条件。
这里,假设所有的正样本都放在f:/pos文件夹下,所有的负样本都放在f:/neg文件夹下;

3、如何用opencv训练自己的分类器

首先,需要说明的是,OpenCV自带的haar training提取的特征是haar特征 分类器是AdaBoost级联分类器(如需了解Adaboost算法, 。所谓的级联分类器,就是将若干的简单的分量分类器(可以理解为一般的普通分类器)依次串联起来,最终的检测分类结果,要依次通过所有的分量分类器才能算是一个有效的检测分类结果。否则,就认为当前检测区域内没有我们需要找的目标。
利用OpenCV自带的haar training程序训练一个分类器,需要经过以下几个步骤:
(1)收集训练样本:
训练样本包括正样本和负样本。正样本,通俗点说,就是图片中只有你需要的目标。而负样本的图片只要其中不含有目标就可以了。但需要说明的是,负样本也并非随便选取的。例如,你需要检测的目标是汽车,那么正样本就应该是仅仅含有汽车的图片,而负样本显然不能是一些包含天空的,海洋的,风景的图片。因为你最终训练分类器的目的是检测汽车,而汽车应该出现在马路上。也就是说,分类器最终检测的图片应该是那些包含马路,交通标志,建筑物,广告牌,汽车,摩托车,三轮车,行人,自行车等在内的图片。很明显,这里的负样本应该是包含摩托车、三轮车、自行车、行人、路面、灌木丛、花草、交通标志、广告牌等。
另外,需要提醒的是,adaboost方法也是机器学习中的一个经典算法,而机器学习算法的前提条件是,测试样本和训练样本独立同分布。所谓的独立同分布,可以简单理解为:训练样本要和最终的应用场合非常接近或者一致。否则,基于机器学习的算法并不能保证算法的有效性。此外,足够的训练样本(至少得几千张正样本、几千张负样本)也是保证训练算法有效性的一个前提条件。
这里,假设所有的正样本都放在f:/pos文件夹下,所有的负样本都放在f:/neg文件夹下;
(2)对所有的正样本进行尺寸归一化:
上一步收集到的正样本,有很多的尺寸大小,有的是200*300,有的是500*800...尺寸归一化的目的,就是把所有的图片都缩放到同一大小。比如,都缩放到50*60的大小。
(3)生成正样本描述文件:
所谓的正样本描述文件,其实就是一个文本文件,只不过,很多人喜欢将这个文件的后缀改成.dat而已。正样本描述文件中的内容包括:文件名 目标个数 目标在图片中的位置(x,y,width,height)
典型的正样本描述文件如下所示:
0.jpg 1 0 0 30 40
1.jpg 1 0 0 30 40
2.jpg 1 0 0 30 40
.....
不难发现,正样本描述文件中,每一个正样本占一行,每一行以正样本图片开头,后面紧跟着该图片中正样本的数量(通常为1),以及正样本在图片中的位置
假如,f:\pos文件夹下有5000个正样本图片,每个图片中仅有一个目标。那么,我们可以写程序(遍历文件夹中的所有图片文件,将文件名写入到文件中,将正样本在图片中的位置,大小都写入文件中)生成一个pos.dat文件作为正样本描述文件。

4、分类器的分类器的准确度评估方法

影响一个分类器错误率的因素(1)、训练集的记录数量。生成器要利用训练集进行学习,因而训练集越大,分类器也就越可靠。然而,训练集越大,生成器构造分类器的时间也就越长。错误率改善情况随训练集规模的增大而降低。(2)、属性的数目。更多的属性数目对于生成器而言意味着要计算更多的组合,使得生成器难度增大,需要的时间也更长。有时随机的关系会将生成器引入歧途,结果可能构造出不够准确的分类器(这在技术上被称为过分拟合)。因此,如果我们通过常识可以确认某个属性与目标无关,则将它从训练集中移走。(3)、属性中的信息。有时生成器不能从属性中获取足够的信息来正确、低错误率地预测标签(如试图根据某人眼睛的颜色来决定他的收入)。加入其他的属性(如职业、每周工作小时数和年龄),可以降低错误率。(4)、待预测记录的分布。如果待预测记录来自不同于训练集中记录的分布,那么错误率有可能很高。比如如果你从包含家用轿车数据的训练集中构造出分类器,那么试图用它来对包含许多运动用车辆的记录进行分类可能没多大用途,因为数据属性值的分布可能是有很大差别的。 评估方法
有两种方法可以用于对分类器的错误率进行评估,它们都假定待预测记录和训练集取自同样的样本分布。(1) 保留方法(Holdout):记录集中的一部分(通常是2/3)作为训练集,保留剩余的部分用作测试集。生成器使用2/3 的数据来构造分类器,然后使用这个分类器来对测试集进行分类,得出的错误率就是评估错误率。虽然这种方法速度快,但由于仅使用2/3 的数据来构造分类器,因此它没有充分利用所有的数据来进行学习。如果使用所有的数据,那么可能构造出更精确的分类器。(2) 交叉纠错方法(Cross validation):数据集被分成k 个没有交叉数据的子集,所有子集的大小大致相同。生成器训练和测试共k 次;每一次,生成器使用去除一个子集的剩余数据作为训练集,然后在被去除的子集上进行测试。把所有得到的错误率的平均值作为评估错误率。交叉纠错法可以被重复多次(t),对于一个t 次k 分的交叉纠错法,k *t 个分类器被构造并被评估,这意味着交叉纠错法的时间是分类器构造时间的k *t 倍。增加重复的次数意味着运行时间的增长和错误率评估的改善。我们可以对k 的值进行调整,将它减少到3 或5,这样可以缩短运行时间。然而,减小训练集有可能使评估产生更大的偏差。通常Holdout 评估方法被用在最初试验性的场合,或者多于5000 条记录的数据集;交叉纠错法被用于建立最终的分类器,或者很小的数据集。

5、有比adaboost还快的车辆检测算法吗

AdaBoost算法里面 要求弱分类器正确率>50%并且各个弱分类器相互独立 可是如果弱分类器错误率均在50%以下,但不完全独立 会造成什么样的后果呢?今天和aa讨论的,弱分类器用最小平方误差,最小平方误差的错误率应该是50%以下的,可是调整权值会使分类器不独立(这个我也不这么认为,因为弱分类器是重新调整权值后重新计算的,跟上一次应该不算线形相关。何况,在AdaBoost算法描述本身,也是用的调整权值来做的~ 说明这样的权值调整,并不会使弱分类器变得相关,不然,AdaBoost算法这么大的漏洞,不可能被广泛应用的)aa说会让组合后的分类器错误率>50%而退出~ 可是我觉得不会,迭代算法应该能保证其越来越优,只是可能一直到不了错误率<0附近的值的状态。btw AdaBoost调不出结果来。。。哭ing

6、如何用OpenCV训练自己的分类器

OpenCV训练分类器
一、简介

目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。
该方法的基本步骤为:
首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。

分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。

分类器训练完以后,就可以应用于输入图像中的感兴趣区域(与训练样本相同的尺寸)的检测。检测到目标区域(汽车或人脸)分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。

目前支持这种分类器的boosting技术有四种:
Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。
"boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。

根据上面的分析,目标检测分为三个步骤:
1、 样本的创建
2、 训练分类器

3、 利用训练好的分类器进行目标检测。

二、样本创建
训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指其它任意图片,所有的样本图片都被归一化为同样的尺寸大小(例如,20x20)。
负样本
负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件必须手工创建。
e.g: 负样本描述文件的一个例子:
假定目录结构如下:
/img
img1.jpg
img2.jpg
bg.txt
则背景描述文件bg.txt的内容为:
img/img1.jpg
img/img2.jpg
正样本
正样本由程序craatesample程序来创建。该程序的源代码由OpenCV给出,并且在bin目录下包含了这个可执行的程序。
正样本可以由单个的目标图片或者一系列的事先标记好的图片来创建。
Createsamples程序的命令行参数:
命令行参数:
-vec <vec_file_name>
训练好的正样本的输出文件名。
-img<image_file_name>
源目标图片(例如:一个公司图标)
-bg<background_file_name>
背景描述文件。
-num<number_of_samples>
要产生的正样本的数量,和正样本图片数目相同。
-bgcolor<background_color>
背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。
-bgthresh<background_color_threshold>
-inv
如果指定,颜色会反色
-randinv
如果指定,颜色会任意反色
-maxidev<max_intensity_deviation>
背景色最大的偏离度。
-maxangel<max_x_rotation_angle>
-maxangle<max_y_rotation_angle>,
-maxzangle<max_x_rotation_angle>
最大旋转角度,以弧度为单位。
-show
如果指定,每个样本会被显示出来,按下"esc"会关闭这一开关,即不显示样本图片,而创建过程继续。这是个有用的debug选项。
-w<sample_width>
输出样本的宽度(以像素为单位)
-h《sample_height》
输出样本的高度,以像素为单位。
注:正样本也可以从一个预先标记好的图像集合中获取。这个集合由一个文本文件来描述,类似于背景描述文件。每一个文本行对应一个图片。每行的第一个元素是图片文件名,第二个元素是对象实体的个数。后面紧跟着的是与之匹配的矩形框(x, y, 宽度,高度)。

7、opencv车辆检测都用什么方法

常规的车辆检测使用机器学习或者深度学习方法。通过为相关的分类器或者神经网进行大量的车辆图片进行训练最终训练出可以识别车辆的模型。使用模型对图像中的车辆进行检测。

8、有车牌号怎样查车辆位置?

知道车牌怎么查询车子所在位置?这个是无法查询的。因为要想某台车、某个人么位置,需要有定位系统,也就是常说的GPS,说导航。利用至少3颗卫星或者基站来进行定位、反馈。
车辆上的GPS只能用于接收车辆本身的位置信息,且不会与车牌号绑定,所以是无法进行定位查询。
GIS技术的定位技术,主要可实现如下功能:
1.跟踪定位
监控中心能全天侯24小时监控所有被控车辆的实时位置、行驶方向、行驶速度,以便最及时的掌握车辆的状况。
2.轨迹回放
监控中心能随时回放近60天内的自定义时段车辆历史行程、轨迹记录。(根据情况,可选配轨迹DVD刻录服务)
3.报警(报告)
3.1,超速报警:车辆行驶速度超出监控中心预设的速度时,及时上报监控中心
3.2,区域报警(电子围栏):监控中心设定区域范围,车辆超出或驶入预设的区域会向监控调度中心给出相应的报警
3.3,停车报告:调度中心可对车辆的历史停车记录以文字形式生成报表,其中描述车辆的停车地点、时间和开车时间等信息,并可对其进行打印。
等很多应用。

知道车牌号怎么查车的位置
知道车牌号怎么定位车辆?
1、用类似的二分分类器直接车牌检测。
2、利用检测的思路,如swt或mser做文字检测,然后做一个简单的二分分类器进行确认
3、再提供一个开源项目,可以好好研究代码识别一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。由于牌照图象在原始图象中是很有特征的一个子区域,确切说是水平度较高的横向近似的长方形,它在原始图象中的相对位置比较集中,而且其灰度值与周边区域有明显的不同,因而在其边缘形成了灰度突变的边界,这样就便于通过边缘检测来对图象进行分割。
1牌照区域定位
牌照图象经过了以上的处理后,牌照区域已经十分明显,而且其边缘得到了勾勒和加强。此时可进一步确定牌照在整幅图象中的准确位置。这里选用的是数学形态学的方法,其基本思想是用具有一定形态的机构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。数学形态学的应用可以简化图像数据,保持它们基本的形态特征,并除去不相干的结构。
2牌照区域分割
对车牌的分割可以有很多种方法,本程序是利用车牌的彩色信息的彩色分割方法。根据车牌底色等有关的先验知识,采用彩色像素点统计的方法分割出合理的车牌区域,确定车牌底色蓝色RGB对应的各自灰度范围,然后行方向统计在此颜色范围内的像素点数量,设定合理的阈值,确定车牌在行方向的合理区域。然后,在分割出的行区域内,统计列方向蓝色像素点的数量,最终确定完整的车牌区域。


与分类器检测车辆相关的内容