1、纯电动汽车动力布置有哪些形式?
电动汽车的结构布置各式各样,比较灵活,概括起来分为纯电动汽车电动机中央驱动和电动轮驱动两种形式。电动机中央驱动形式借用了内燃机汽车的驱动方案,将内燃机换成电动机及其相关器件,用一台电动机驱动左右两侧的车轮。
电动轮驱动形式的机械传动装置的体积与质量较电动机中央驱动形式的大大减小,效率显著提高,代价是增加了控制系统的复杂程度与成本。
纯电动汽车采用电动机中央驱动形式,直接借用了内燃机汽车的驱动方案,由发动机前置前驱发展而来,由电动机、离合器、变速箱和差速器组成。用电驱动装置替代了内燃机,通过离合器将电动机动力与驱动轮进行连接或动力切断,变速箱提供不同的传动比以变更转速—功率曲线匹配的需要,差速器实现转弯时两车轮不同车速的行驶。
纯电动汽车采用双电动机电动轮驱动方式,机械差速器被两个牵引电动机所代替,两个电动机分别驱动各自车轮,转弯时通过电子差速控制以不同车速行驶,省掉了机械变速器。
纯电动汽车所独有的以蓄电池作能量源的一种结构,蓄电池可以布置在上的四周,也可以集中布置在车的尾部或者布置在底盘下面。所选用的蓄电池应该能提供足够高的比能量和比功率,并且在车辆制动时能回收再生制动能量。具有高比能量和高比功率的动力电池对纯电动汽车的加速性和爬坡能力。
为了解决一种蓄电池不能同时满足对比能量和比功率的要求这个问题,可以在纯电动汽车同时采用两种不同的蓄电池,其中一种能提供高比能量,另外一种提供高比功率。两种电池作混合能量源的基本结构,这两种结构不仅分开了对比能量和比功率的要求,而且在汽车下坡或制动时可利用蓄电池回收能量。
燃料电池所需的氢气不仅能以压缩氢气、液态氢或金属氢化物的形式储存,还可以由常温的液态燃料如甲醇或汽油随车产生。一个带小型重整器的纯电动汽车的结构,燃料电池所需的氢气由重整随车产生。
2、新能源汽车永磁同步电机的发展史,究竟是怎样的?
电动汽车具有低噪声、零排放、高效率、节能、能源多样化和综合利用等明显优势,成为各国发展的主流。随着永磁材料性能的提高和成本的降低,永磁同步电机(PMSM)以其高效率、高功率因数和高功率密度的优势成为电动汽车驱动系统中的主流电机之一。
永磁电机驱动系统
永磁电机不仅具有无刷结构和交流电机运行可靠的优点,还具有DC电机调速性能好的优点。它不需要励磁绕组,可以实现小尺寸和高控制效率。它是电动汽车电机研发和应用的热点。永磁电机驱动系统可分为无刷直流电机系统和PMSM系统。无刷DC电机(BLDCM)系统具有转矩大、功率密度高、位置检测和控制方法简单等优点,但换向电流难以达到理想状态,会引起转矩脉动、振动和噪声等问题。无刷直流电机系统在速度要求不高的电动汽车驱动领域具有一定的优势,得到了广泛的重视和应用。永磁同步电机(PMSM)系统具有控制精度高、转矩密度高、转矩稳定性好、噪声低等特点。通过合理设计永磁磁路结构,可以获得较高的弱磁性能,提高电机调速范围。因此,它在电动汽车驾驶中具有很高的应用价值,受到国内外电动汽车行业的高度重视,在日本得到了广泛应用。是一种理想的电动汽车驱动系统。
1.日本电动汽车用永磁同步电机的现状
日本从1965年开始发展电动汽车,1967年成立日本电动汽车协会。由于永磁同步电机的优异性能,自问世以来一直受到日本汽车公司的青睐。1996年,丰田汽车公司的电动汽车RAV4采用东京电机公司的插入式永磁同步电机作为驱动电机,其下的日本富士电子研究所研制的永磁同步电机可达到最大功率50kW,最大转速1300r/min。1998年1月,日产公司开发的新一代电动乘用车在美国加州投入使用。驱动电机采用钕铁硼材料,电机体积小。电动汽车驱动电机的技术指标见表2。
近年来,日本电气工程研究实验室与其他公司合作推出了一款内置双层永磁体的永磁同步电机(如图1所示),提高了电机的横轴电导,增加了电机10%的转矩,增加了10%的最大效率区,电机最大峰值效率可达97%以上,主工作区效率可达93%以上。
2.欧洲电动汽车用永磁同步电机的现状
在法国的VEDELIC电动汽车项目中,PSA电动汽车动力总成制造商Moteurleroy-Somer在1997年改进了驱动电机。选用的新型驱动电机是三相永磁同步电机。
与传统的DC驱动系统相比,法国采用的三相永磁同步电机在以下三个方面进行了改进:①功率密度比和转矩密度比更高;②效率更高;③可靠性提高,维护方便。德国第三代奥迪混合动力汽车的驱动电机采用永磁同步电机(PMSM)。最大速度为12500转/分钟,最大输出功率为32kW。
3.美国电动汽车用永磁同步电机的现状
电动汽车在美国的发展比日本晚。在美国,感应电机的设计和控制策略已经成熟,因此感应电机是电动汽车的主要驱动电机。而美国也对永磁同步电机进行了研究,成果突出。詹姆士开发的永磁同步电机。歌迪和凯文。SatCon公司的LeRowR.E采用定子双绕组技术,不仅扩大了电机的转速范围,而且有效利用了逆变器的电压,绕组电流小,电机效率高。表4显示了美国SatCon公司开发的电机在不同速度和功率下的效率特性。
3、请问,利用轮毂电机作为驱动的电动汽车是如何实现转向的?
兄弟, 很羡慕你能做这个方向! 如果解决这个问题, 那电动汽车就成功一大半了.
除了考虑,驱动力的因素外, 转向角度的控制要点在轮速差, 你可以考虑做一个模型, 来实现四轮联动控制,注意设计好边界条件(驱动力, 转速和转向角度) - 这块儿 没有现成的数据给你参考, 需要你通过模拟试验来完成.
从我接触的知识面来说, 四轮独立控制难度不大, 关键在联动方程的设置, 也就控制器的算法问题.
希望这些能对你有所帮助, 祝早日完成答辩,最好实现产业化.
最近关于轮毂电机电动车很火爆, 貌似奇瑞出了款,可以借鉴下, 不过好像没发布转向参数. 另外, 之前在展会上见过博士的驱动电机,貌似很牛.
若有兴趣, 可以发email: [email protected]
4、采用减速驱动永磁轮毂电机的电动汽车有哪些以及他们的主要参数?
的转子导体在定子产生的磁场磁场中受到电磁力作用(力的方向用左手定则判定),电磁力对电机转子轴形成电磁转矩,驱动电机转子沿着旋转磁场方向旋转,当电动机轴上带机械负载时,便向外输出机械能。由于没有短路环部分的磁通比有短路环部分的磁通领先,电机转动方向与旋转磁场方向相同。
如果我的回答对你有帮助请采纳!谢谢
5、电动汽车永磁电机有哪些设计实例
1.IPM永磁— 磁阻同步电机
2.盘式永磁同步电机-TORUS盘式永磁电机
3.盘式永磁同步电机-KAMAN盘式永磁车轮电机 、
4.双馈电混合并联磁路无刷永磁电机、
5.旁路式混合励磁无刷永磁电机
6.独立磁路混合励磁电机
7.双机械端口能量变换器
8.新型双转轴能量变换器—磁性齿轮+永磁同步电机
9.混合励磁爪极电机
6、樊英的科研项目
现任东南大学电气工程学院电机与控制系副教授,系副主任。作为主要成员参加国家自然科学基金项目1项—“电气无级变速双功率流风力发电机系统的关键基础问题”和国家杰出青年基金港澳青年学者合作研究基金1项—“新型电机与特种电机(混合电动车无级调速系统)”,作为主要成员参加“近海集群大容量风力发电机组并网关键技术研究”(企业项目);曾参加“电动汽车用新型双凸极无刷电机驱动系统研究”(教育部项目)、“轴向磁场盘式异步电机无泄漏液体泵开发”(企业项目);在香港大学攻读博士学位期间,作为主要成员曾参加香港研究资助局RGC 项目“Development of a Novel Electric Machine for Wind Power Generation”、“Development of a Novel Stator-Doubly-Fed Doubly-Salient Motor Drive for Electric Vehicles”和“新型电励磁风力发电机研究”等项目的研究工作,在风力发电技术领域具有良好的研究基础。在国内外权威期刊和国际重要学术会议上发表论文17篇,其中,在 IEEE Transactions on Instry Applications, IEEE Transactions on Magnetics, IEEE Transactions on Energy Conversion, Journal of Applied Physics, Electric Power Components and Systems等国际一流期刊发表论文7篇(第一作者4篇),SCI收录论文6篇(第一作者3篇—其中2篇是关于风力发电的研究成果),EI收录论文11篇,先后两次获得香港大学研究生奖学金。获江苏省科技进步二等奖1 项。主要研究方向为电动汽车驱动控制系统、新型永磁电机设计分析与控制、电动汽车用轮毂电机系统、新型直驱式风力发电系统、新型电气传动与现代变流技术研究。
7、轮毂电机对比传统电机,为何先进的轮毂电机电动车没有大规模装备
随着新能源汽车市场的扩大,越来越多的汽车制造商投身于电动机的研发,目前最主流的电机就是安置于传统汽车前置内燃机的位置或者后轴之上,布局与传统汽车无异,但在许多概念电动车上,我们会看到轮毂电机这个词,它被安装在车轮的轮毂上并直接驱动车轮,作为新的研究方向,虽然已经有很多厂家在致力于此,但我们仍然没有看到大规模装备,那么轮毂电机和传统电机有何区别,又有何优缺点,今天我们选车侦探就来详细分析。
1.轮毂电机的原理,与传统电机一样吗?
以异步轮毂电动机为例,其主要由定子、转子和附加件组成,定子铁心一般由带绝缘层的硅钢片制成,用于放置定子绕组,定子绕组以相同的角度分布在圆心上,也就是各自呈120度角,绕组上的线圈按一定规律缠绕,定子绕组流过电流产生旋转磁场。此时旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体产生感应电动势并产生感应电流,转子导体在磁场中受到电磁力作用,形成电磁转矩,驱动转子旋转。通俗来讲,就是将电流的电能转换为机械能的过程,相信不少人小时候都玩过四驱车,而驱动四驱车的马达就是一个小电机,只不过里面的两块磁铁是永磁,而交流电机是需要用电来产生磁场,相对内燃机,电机其实更加简单易控。
轮毂电机的原理其实与传统电机没有区别,只是在结构上更为经凑,这意味着线圈更少,磁场不如传统位置布置的电机强劲,因此输出功率都比较小。此外,轮毂电机有内旋转电机和外旋转电机两种,其中外旋转电机的转子位于定子内部,就像传统电机一样。而外旋电机的转子位于定子外面,围绕定子旋转。轮毂电机将动力装置、传动装置和制动装置都整合到了轮毂内,因此电动车的机械部分大幅简化。
2.轮毂电机相对传统电机有何优缺点?
就像上面所说,由于轮毂的直径和轮胎的宽度有限,因此轮毂电机的最大体积不如传统电机,输出功率也很难达到标准,因此目前许多轮毂电机只在两轮骑行电动车上使用。相比传统电机,轮毂电机其实有许多非常显著的优点,首先这种设计没有传输损失,因为没有传动杆从发动机到车轮,所以效率非常高。此外,轮毂电机可以通过左右车轮的不同转速反转,实现类似履带式车辆的差动转向,大大减小车辆的转弯半径,在特殊情况下几乎可以实现原地转向,也就是常说的坦克转弯。在装载空间上,轮毂电机车辆也占有优势,前后都可以拥有宽大的行李箱。
那有这么多优点,为何现实中很难看到,除了动力因素,还有成本也是制约发展的一环,由于轮毂内还需要集成刹车系统,集成难度相比传统电机更高,而刹车系统的散热也是非常重要的一环,虽然电机不需要过多的空气来散热,但是会占用大部分的体积,让散热难度增加,存在刹车安全隐患。
其次,寿命方面也要比放置在车辆中间的传统电机更贵,在机舱内的电机会有多重的保护层,也不会出现风吹日晒的现象,而路面上的石子与灰尘也不会对电机造成影响,轮毂电机由于暴露在外,因此使用寿命短,经常需要维修保养,这都是轮毂电机急需解决的问题。
选车侦探观点:在日常生活中,目前我们很难看到装有轮毂电机的量产车,但随着电动汽车的发展,相信不久的未来就会有此类电动车出现,但是由于缺点非常鲜明,虽然在操控方面有新的突破,但维修保养是最大的问题所在,因此我们并不建议选择这类车型。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
8、有谁知道中小型永磁同步电动机的大致设计流程,越详细越好。
你好!
出功率10KW,永磁体为径向式,转子上有阻尼绕组等。唐任远的现代永磁电机看过一遍,比较散,不太明白,望各位大侠指点。
打字不易,采纳哦!
9、哪款纯电动车的驱动方式是用轮毂电机驱动的?
小日本的
SIM-LEI一次充电的航程可达333公里
清水浩教授研究轮毂电机驱动电动汽车已有30多年历史,陆续开发了10台轮毂驱动车,为了解决电动汽车续航能力差、价格昂贵等瓶颈问题,研发小组的专家们将重点放在减轻车体材料重量、提高再生能源效率、采用超低滚动阻力轮胎、大胆使用“鱼”型流线型设计将行驶阻力系数降至最低,终于开发出与至今出现的电动汽车不同概念的轮毂电动汽车。
该款轮毂电动汽车外形犹如大海中畅游的“鱼”,全长4.7米,车宽1.6米,高1.55米,载人4名,总重1650公斤,一次充电JC08模式下333公里、耗能77Wh/km ,100公里均速行驶模式下308公里、耗能84Wh/km,0→100km/h加速时间为4.8秒,最高时速可达150km/h。未来气息的仪表盘、19英寸的倒车监视器,所有按键集中在方向盘左边、锂电池箱如抽屉放在汽车底部。轮毂电机设计可4轮两驱动、4轮4驱动、8轮8驱动,新车设计和旧车改造均适用。
轮毂电机的设计也与常规轮毂电机不同,它一改传统电动汽车平板式驱动,而采用了减速器方式和直接驱动方式。电机内置于轮毂依赖电机的微型化和高效能,具备高能效、扩大利用空间和控制性能高等优点,与替代引擎采用电机的电动汽车相比可延伸30%以上的续航里程。
清水教授称今后倒车监视器还将具备信息通讯和娱乐功能,可以说该车的设计理念和功能给当今汽车行业带来一场革命。为了实现不仅自己造汽车,更要用低廉的价格,向生产电动汽车的企事业单位提供电动汽车的尖端技术和信息的愿望,该教授2009年8月联合34家企事业成立了高科技公司“SIM-DRIVE”,所有投资企业可按商业规则享用科研成果。
本篇文章来源于汽车网[www.cnautonews.com]原文链接:http://www.cnautonews.com/plus/view.php?aid=57235
10、哪个大神有汽车电动轮毂的装配图、、、工作原理是什么?怎么工作的?!!
电动汽车轮毂电机总成及控制系统属于汽车零部件,是电动汽车零部件的关键核心部件,该系统的特点是:将电机系统、刹车系统、悬挂系统于一身的独特设计,有永磁无刷同步电动汽车轮毂电机和开关磁阻轮毂电机,可采用P WM控制和交流变频控制,这种完善的产品设计,具有效率高、重量轻、寿命长、噪音低、匹配强、结构简单,组装容易、功能齐全、独立悬挂、安全可靠的特点,不用车桥、变速箱等机械部件而直接悬挂在车身上安装轮胎,传动消耗等于零,转动效率百分之百。与传统的电机传动轴-变速箱-差速器-车桥等电动汽车机械传动系统有质的变化,因而整体结构,驱动性能,综合效率,续驶里程优于任何形式的驱动结构,可配置成两轮驱动和四轮驱动,是电动汽车驱动系统的首选,而且可与任何型号的汽车相匹配,组成电油混合动力汽车,轮毂电机驱动是未来电动汽车驱动形式的发展方向。
①、集成化轮毂总成
将轮毂电机的电机系统,变速系统,刹车总成、悬架总成融为一体,结构紧凑简单牢固,便于整体车辆的设计和便于任何车辆的改装设计及油电混合动力汽车的设计。
②、变频双动力驱动
轮毂电机在车辆起步时用变频方法促使电机有较大输出转矩,以满足车辆的起步要求,正常运行时减少电流输出以节省电力。
③、电子差速控制
在控制车轮转速的基础上,以车轮的滑移率为控制目标,以驱动轮的转矩而控制变量。在保证汽车操纵较高性和平顺性前提下,当汽车直线行驶时,平均分配两驱动轮的转速和转矩,在汽车转向时利用敏感电路输入不同的转速和转矩。使两驱动轮的滑移率最低,实施电子差速确保行驶安全性。